名前: エプソム 日時: 2012-02-09 08:32:00 IPアドレス: 211.12.192.*
>>56639 サンプルソースを提示します。検証よろしくお願いします。 \documentclass[a4paper,10pt,fleqn]{jarticle} \usepackage{amsmath} \begin{document} $A=\left( \begin{array}{cc}0 & 1 \\ 1 & 0 \end{array} \right),\ B=\left( \begin{array}{cc}0 & 1 \\ -1 & 0\end{array} \right)$ のとき %%%%% $(1)$ $A^m=E,\ B^n=E$ となる最小の正の整数 $m,\ n$ をそれぞれ求めよ。 \begin{align*} A^2 & = \left( \begin{array}{cc}0 & 1 \\ 1 & 0\end{array} \right)\left( \begin{array}{cc}0 & 1 \\ 1 & 0\end{array} \right)=\left( \begin{array}{cc}1 & 0 \\ 0 & 1\end{array} \right) \\ B^2 & = \left( \begin{array}{cc}0 & 1 \\ -1 & 0\end{array} \right)\left( \begin{array}{cc}0 & 1 \\ -1 & 0\end{array} \right)=\left( \begin{array}{cc}-1 & 0 \\ 0 & -1\end{array} \right) \neq E \\ B^3 & = B^2 B = \left( \begin{array}{cc}-1 & 0 \\ 0 & -1\end{array} \right) \left( \begin{array}{cc}0 & 1 \\ -1 & 0\end{array} \right) = \left( \begin{array}{cc}0 & -1 \\ -1 & 0\end{array} \right) \neq E \\ B^4 & = B^3 B = \left( \begin{array}{cc}0 & -1 \\ -1 & 0\end{array} \right) \left( \begin{array}{cc}0 & 1 \\ -1 & 0\end{array} \right) = \left( \begin{array}{cc}1 & 0 \\ 0 & 1\end{array} \right) \end{align*} よって, $A^m=E,\ B^n=E$ となる最小の正の整数 $m,\ n$ は $m=2,\ n=4$ %%%%% $(2)$ \ $ABA=B^k,\ AB^2A=B^l$ をみたす最小の正の整数 $k,\ l$ をそれぞれ求めよ。 \begin{align*} ABA & = \left( \begin{array}{cc}0 & 1 \\ 1 & 0\end{array} \right) \left( \begin{array}{cc}0 & 1 \\ -1 & 0\end{array} \right) \left( \begin{array}{cc}0 & 1 \\ 1 & 0\end{array} \right) \\ & = \left( \begin{array}{cc}0 & 1 \\ 1 & 0\end{array} \right) \left( \begin{array}{cc}1 & 0 \\ 0 & -1\end{array} \right) = \left( \begin{array}{cc}0 & -1 \\ 1 & 0\end{array} \right)=B^3 \\ AB^2A & = \left( \begin{array}{cc}0 & 1 \\ 1 & 0\end{array} \right) \left( \begin{array}{cc}-1 & 0 \\ 0 & -1\end{array} \right) \left( \begin{array}{cc}0 & 1 \\ 1 & 0\end{array} \right) \\ & = \left( \begin{array}{cc}0 & 1 \\ 1 & 0\end{array} \right) \left( \begin{array}{cc}0 & -1 \\ -1 & 0\end{array} \right) = \left( \begin{array}{cc}-1 & 0 \\ 0 & -1\end{array} \right)=B^2 \\ \end{align*} よって, $ABA=B^k,\ AB^2A=B^l$ みたす最小の正の整数 $k,\ l$ は $k=3,\ l=2$ \end{document}
この書き込みへの返事: