ホーム >
統計・データ解析
『Rで楽しむ統計』 が出ました。サポートページ
『Rで楽しむベイズ統計入門』 が出ました。サポートページ ,第7章のRコードをStanで書き直したRで楽しむStan
全国学力・学習状況調査の個票の疑似データがこちら で公開されています。データ分析の練習に使えそう です。SSDSE(教育用標準データセット) も。
R 4.x では stringsAsFactors=FALSE
がデフォルトになりましたが,本サイトの古い記事ではそうなっていないところがあるかもしれません(read.csv()
などで as.is=TRUE
は不要になります(あってもかまいませんが))。
R 4.2 ではWindowsでもMac同様UTF-8がデフォルトになりました。もう fileEncoding
オプションに "UTF-8"
,"UTF-8-BOM"
を指定する必要はなくなりそうです。一方で、SJIS(CP932)データの場合、Windowsでも fileEncoding="CP932"
が必要になります。
CRANの統数研ミラー https://cran.ism.ac.jp は消失したようです。今はPosix提供のCDN https://cloud.r-project.org が安定しているでしょうか。
姉妹編:Python
お品書き
Rや統計に関するリンク
私の古いブログ から
いろいろ
オープンアクセスジャーナル
統計関係e-books(日本語)
統計関係e-books(英語)
下記以外に bookdown で制作されたオンライン本が多数ある。100+ Free Data Science Books も参照。
Exploring data: graphs and numerical summaries -- LearningSpace -- OpenLearn -- The Open University
Advanced Placement Statistics Curriculum 2007 by Statistics Online Computational Resource
Resampling: The New Statistics by Julian L. Simon (1997)
Handbook of Biological Statistics by John H. McDonald
Probability Theory -- the Logic of Science by E. T. Jaynes
Statistics -- Wikibooks
A First Course In Mathematical Statistics by C. E. Weatherburn (1949)
Introduction To Mathematical Statistics, Third Edition by Paul G. Hoel (1962)
Introductory Statistics by Thomas H. Wonnacott and Ronald J. Wonnacott (1969)
Statistical Methods for Research Workers by Ronald A. Fisher (1925)(古典)
The R.A. Fisher Digital Archive
Practice Of Business Statistics ,The Practice of Business Statistics, Second Edition のいくつかの章が見本としてダウンロードできます
The Little Handbook of Statistical Practice
CAST: Public e-books
Prasenjit Saha, Principles of Data Analysis (2002)
Edward R. Tufte, Data Analysis for Politics and Policy (1974)
G. Jay Kerns, Introduction to Probability and Statistics Using R (2010)
Willard C. Brinton: Graphic Presentation (1939) スキャンPDF
Allen B. Downey, Think Stats: Probability and Statistics for Programmers おなじ著者の本が他にも Green Tea Press で入手できる
Baayen (2008) Analyzing Linguistic Data. A Practical Introduction to Statistics Using R の草稿PDFがここ からリンクされている。DRAFTという透かしが入っている
R Programming - Manuals
9 of the Best Free R Books - Part 1 …
Learning Statistics with R
Learning Statistics with jamovi (jamovi はRが使える表計算ソフト)
Statistics Done Wrong (邦訳: ダメな統計学 )
Trevor Hastie: Publications から The Elements of Statistical Learning , An Introduction to Statistical Learning with Applications in R , Statistical Learning with Sparsity: the Lasso and Generalizations , Computer Age Statistical Inference:Algorithms, Evidence and Data Science などのPDFへのリンクあり
第2版とPython版が出た→ An Introduction to Statistical Learning (The Elements of Statistical Learningの実践編)
Think Bayes (CC BY-NC)
Data Mining and Analysis
Bayesian Reasoning and Machine Learning
David MacKay, Information Theory, Inference, and Learning Algorithms
12 Free (as in beer) Data Mining Books
Simon Wood : Core Statistics (PDF)
Teach Data Science :
Introduction to Data Science --
Free Electronic Textbook with Introduction to R
(iBooks store から無料でダウンロードできる。PDF版もあり)
Hadley Wickham: Advanced R /
R for Data Science /
R for Data Science (2e) /
ggplot2: elegant graphics for data analysis
(GitHub: ggplot2-book )
Rabbit Introduction to R
Virasakdi Chongsuvivatwong: Analysis of Epidemiological Data Using R and Epicalc (PDF) [ほかにも http://cran.r-project.org/doc/contrib/ には多数の文書がある]
Tomás J. Aragón: Epidemiology Using R (PDF)
PH525x series - Biomedical Data Science
27 Free Data Mining Books - DataOnFocus
OpenIntro Statistics / GitHub / 日本語版『データ分析のための統計学入門』は国友直人先生のホームページ (文字化けしたらSJISに設定する)で公開中(2021-3-3版PDFへの直リン )
David Colquhoun: Lectures on Biostatictics (1971), DC's Improbable Science
ProjectMOSAIC/LittleBooks : Start Teaching Statistics Using R / A Student's Guide to R
Cookbook for R
Miguel Hernan, Causal Inference Book (drafts of the book: Hernán MA, Robins JM (2018). Causal Inference. Boca Raton: Chapman & Hall/CRC, forthcoming)
Florian Heiss, Using R for Introductory Econometrics (下の方にオンライン版へのリンクあり)
Kieran Healy, Data Visualization (draft)
Jonas Peters, Dominik Janzing and Bernhard Schölkopf,
Elements of Causal Inference: Foundations and Learning Algorithms (「Download PDF」というリンクをクリック)
Deep Learning - The Straight Dope /
Dive into Deep Learning (通常版) /
Dive into Deep Learning (NumPy版)
Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction , 2nd edition. (このサイトはディレクトリリスティングが見えるのでおもしろい)
Christopher K. Wikle, Andrew Zammit-Mangion, and Noel Cressie: Spatio-Temporal Statistics with R
Christoph Molnar: Interpretable Machine Learning / 日本語版
immersivemath: immersive linear algebra
Carl Edward Rasmussen and Christopher K. I. Williams: Gaussian Processes for Machine Learning (MIT Press, 2006)
Michael Nielsen: Neural Networks and Deep Learning
Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning (日本語版 は公開停止中)
Winston Chang: R Graphics Cookbook, 2nd edition
Max Kuhn and Kjell Johnson: Feature Engineering and Selection: A Practical Approach for Predictive Models , code and resources: https://github.com/topepo/FES
Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell:
Causal Inference in Statistics: A Primer
(全部ではないが,かなりの部分が公開されている)
Gene Kogan :
Machine Learning for Artists
Open Forensic Science in R
Mathematics for Machine Learning
Joe Blitzstein: Introduction to Probability (also: stat110.net )
Avrim Blum, John Hopcroft, and Ravindran Kannan: Foundations of Data Science, John E. Hopcroft の "Book_with_Avrim Blum and Ravi Kannan" からリンクされている。ファイル名を book.pdf に変えると別バージョンが…
Julien Emile-Geay: Data Analysis in the Earth & Environmental Sciences
Solon Barocas, Moritz Hardt, Arvind Narayanan: Fairness and machine learning
Oscar Baruffa: Big Book of R
Murphy: pml-book (Book 1(Probabilistic Machine Learning: An Introduction)のドラフトがCC BY-NC-NDで公開されている。の下にもいろいろ )
Rob Kabacoff: Data Visualization with R (CC BY-NC-ND)
Stephen Boyd and Lieven Vandenberghe: Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares
The Epidemiologist R Handbook /
日本語版 疫学のための R ハンドブック
Moritz Hardt and Benjamin Recht, PATTERNS, PREDICTIONS, AND ACTIONS - A story about machine learning
Bruce E. Hansen, Probability and Statistics for Economists , Econometrics
Robert E. Schapire and Yoav Freund, Boosting: Foundations and Algorithms (2012) [Open Access -> View HTML]
Alicia A. Johnson, Miles Ott, Mine Dogucu: Bayes Rules! An Introduction to Bayesian Modeling with R
Introduction to Datascience -- Learn Julia Programming, Math & Datascience from Scratch.
Bradley Boehmke & Brandon Greenwell: Hands-On Machine Learning with R
James Brophy: (Mostly Clinical) Epidemiology with R
Targeted Learning in R: Causal Data Science with the tlverse Software Ecosystem
rOpenSci Packages: Development, Maintenance, and Peer Review
Scott Cunningham: Causal Inference: The Mixtape
Claus O. Wilke: Fundamentals of Data Visualization
Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray Algorithms for Decision Making (Juliaを使っている)
Nick Huntington-Klein: The Effect: An Introduction to Research Design and Causality
Emil Hvitfeldt and Julia Silge: Supervised Machine Learning for Text Analysis in R
Chester Ismay and Albert Y. Kim: Statistical Inference via Data Science -- A ModernDive into R and the Tidyverse
Stanley H. Chan: Introduction to Probability for Data Science
Rafael A. Irizarry: Introduction to Data Science -- Data Analysis and Prediction Algorithms with R
Trevor French: R for Data Analysis
Robin Lovelace, Jakub Nowosad, and Jannes Muenchow: Geocomputation with R (GitHub )
Marek Gagolewski: Deep R Programming
Garrett Grolemund (2014): Hands-On Programming with R
Doing Meta-Analysis in R: A Hands-on Guide, 英語版 , 日本語版
Keith McNulty: Handbook of Graphs and Networks in People Analytics -- With Examples in R and Python
Rohan Alexander: Telling Stories with Data -- With Applications in R and Python