Qwen-Image、Qwen-Image-Edit に続いて、最新の Qwen-Image-Edit-2509 が出た。この最新版を使ってみる。
2025-09-23時点のdiffusers-0.35.1ではうまく動かない。pip install git+https://github.com/huggingface/diffusers
で開発版(diffusers-0.36.0.dev0)をインストールする。
import torch from PIL import Image from diffusers import QwenImageEditPlusPipeline pipeline = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=torch.bfloat16) pipeline.to('mps') # Macではmps pipeline.set_progress_bar_config(disable=None) image1 = Image.open("input1.png") image2 = Image.open("input2.png") prompt = "The magician bear is on the left, the alchemist bear is on the right, facing each other in the central park square." inputs = { "image": [image1, image2], "prompt": prompt, "generator": torch.manual_seed(0), "true_cfg_scale": 4.0, "negative_prompt": " ", "num_inference_steps": 40, "num_images_per_prompt": 1, } with torch.inference_mode(): output = pipeline(**inputs) output_image = output.images[0] output_image.save("example.webp", quality=85) # 非可逆 # output_image.save("example.webp", lossless=True, method=6) # 可逆
出力はJPEGでもPNGでもいいが、私は上の例のようにWebPの非可逆または可逆圧縮版をよく使っている。
途中段階を出力するコードをGPT-5に書いてもらった。以下は変更点のみ。これを加えるとトータルでは少し遅くなる。40ステップのうち、20ステップまでは砂嵐、25ステップでやっとぼんやり見えてきて、30ステップでやっと適否が判断できる程度になる。
height, width = 1024, 1024 # --- live preview callback --- def on_step_end(pipe, i, t, kw): tokens = kw["latents"] # shape: [B, num_patches, 64] with torch.no_grad(): # 1) unpack packed tokens -> VAE latent grid [B, z_dim(=16), T(=1), H, W] lat = pipe._unpack_latents(tokens, height, width, pipe.vae_scale_factor) # private helper used by the pipeline # 2) match VAE dtype/device lat = lat.to(pipe.vae.dtype, non_blocking=True) # 3) un-normalize (pipeline does this right before decoding) mean = torch.tensor(pipe.vae.config.latents_mean, device=lat.device, dtype=lat.dtype).view(1, pipe.vae.config.z_dim, 1, 1, 1) stdinv = 1.0 / torch.tensor(pipe.vae.config.latents_std, device=lat.device, dtype=lat.dtype).view(1, pipe.vae.config.z_dim, 1, 1, 1) lat = lat / stdinv + mean # 4) decode and postprocess to a PIL image frame = pipe.vae.decode(lat, return_dict=False)[0][:, :, 0] # take temporal dim 0 pil = pipe.image_processor.postprocess(frame, output_type="pil")[0] pil.save(f"step_{i:03d}.webp") # or display in-notebook print(f"[preview] step {i:02d} saved") # IMPORTANT: return the (possibly updated) tensors for the sampler to continue return {"latents": tokens} inputs = { "image": [image1, image2], "prompt": prompt, "generator": torch.manual_seed(0), "true_cfg_scale": 4.0, "negative_prompt": " ", "num_inference_steps": 40, "num_images_per_prompt": 1, "height": height, "width": width, "callback_on_step_end": on_step_end, "callback_on_step_end_tensor_inputs": ["latents"], # what we want passed into the callback }