// InSb_2.h inline double kappa(double T) { // thermal conductivity [W/K/m] // from guess; // return 4500 / T; // from LB graphs; return 1.4e5 * pow(T, -1.65); } inline double dkappa(double T) { // d\kappa/dT // from guess; // return -4500 / (T * T); // from LB graphs; return -1.65 * 1.4e5 * pow(T, -2.65); } inline double rho(double T) { // resistivity [Ohm m] // from our experiments; return 8e8 * pow(T, -5.333); } inline double drhorho(double T) { // (d\rho/dT)/\rho // from our experiments return -5.333 / T; } inline double hall(double T) { // Hall coef [m^3/A/s]=[Ohm m/Tesla] // From experiment at B = 0.3 Tesla; return -5.6e-4 * exp(-0.034 * (T - 273)) - 9e-5; } inline double dhall(double T) { // dR/dT return (5.6e-4 * 0.034) * exp(-0.034 * (T - 273)); } inline double seebeck(double T) { // Seebeck coef [V/K] // From experiment at B = 0 Tesla; return -3.2e-4 + 1e-6 * (T - 273); // or // return -8.66e4 * exp(-0.00364 * T) } inline double dseebeck(double T) { // d\alpha/dT return 1e-6; } inline double nernst(double T) { // Nernst coef [m^2/K/s] = [V/K/Tesla] // From experiment at B = 4 Tesla; return -5.7e-5 * exp(- (T - 273) / 65) - 3.2e-5; // From experiment at B = 0.1 Tesla; // return -2e-5; } inline double dnernst(double T) { // dN/dT return (5.7e-5 / 65) * exp(- (T - 273) / 65); } inline double righi_leduc(double T) { // Righi-Leduc coef [m^2/V/s] = [/Tesla] // From LB at B = 0.077 Tesla; return 0.05; }