解析学 I 演習問題 2

 $\{a_n\}_{n=1}^{\infty}$ を任意の実数列とするとき、次の (a)-(c) の少なくとも 1 つが成り立つことを示せ:

- (a) ある実数に収束する部分列 $\{a_{k(n)}\}_{n=1}^{\infty}$ が存在する.
- (b) ∞ に発散する部分列 $\{a_{k(n)}\}_{n=1}^{\infty}$ が存在する.
- (\mathbf{c}) $-\infty$ に発散する部分列 $\{a_{k(n)}\}_{n=1}^\infty$ が存在する.

Hint: ①: $\{a_n\}_{n=1}^\infty$ が上に有界でない場合,②: $\{a_n\}_{n=1}^\infty$ が上に有界でない場合,③: ①でも②でもない場合,に分けて考える。 $\{a_n\}_{n=1}^\infty$ が上に有界でない場合には, $a_{k(1)}\geqslant 1$ であるような $k(1)\in \mathbb{N}$ が存在する(なぜか?).このとき, $\{a_n\colon n>k(1)\}$ は上に有界でないので, $a_{k(2)}\geqslant 2$ かつ k(2)>k(1) であるような $k(2)\in \mathbb{N}$ が存在する.

k(2)

(解答欄)

学籍	番号:	120400xx	
氏	名:	外山 大楽	
1	1□・	77四 八米	

ここに解答を記入