I have a question in the text book written by Weinberg, In page 232, (page 316 in the Japanese translation version), there is a following description.

The spin representations, for which $A+B$ is half an odd integer, can similarly be constructed from the direct product of these tensor representations and the Dirac representation $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$. For instance, taking the direct product of the vector $\left.\left(\frac{1}{2}, \frac{1}{2}\right)\right)$ representation and the $\operatorname{Dirac}\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$ representation gives a spinor-vector Ψ^{μ}, that transforms according to the reducible representation

$$
\left(\frac{1}{2}, \frac{1}{2}\right) \otimes\left\{\left[\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)\right]=\left(\frac{1}{2}, 1\right) \oplus\left(\frac{1}{2}, 0\right) \oplus\left(1, \frac{1}{2}\right) \oplus\left(0, \frac{1}{2}\right) .\right.
$$

There are not definitions of \oplus and \otimes in the text book, so I can't understand above equation. If you know the definitions, let me know. If you don't know, please ask members of your laboratory.

